Equivalence between short-time biphasic and incompressible elastic material responses.
نویسندگان
چکیده
Porous-permeable tissues have often been modeled using porous media theories such as the biphasic theory. This study examines the equivalence of the short-time biphasic and incompressible elastic responses for arbitrary deformations and constitutive relations from first principles. This equivalence is illustrated in problems of unconfined compression of a disk, and of articular contact under finite deformation, using two different constitutive relations for the solid matrix of cartilage, one of which accounts for the large disparity observed between the tensile and compressive moduli in this tissue. Demonstrating this equivalence under general conditions provides a rationale for using available finite element codes for incompressible elastic materials as a practical substitute for biphasic analyses, so long as only the short-time biphasic response is sought. In practice, an incompressible elastic analysis is representative of a biphasic analysis over the short-term response deltat<<Delta(2) / //parallelC(4)//K//, where Delta is a characteristic dimension, C(4) is the elasticity tensor, and K is the hydraulic permeability tensor of the solid matrix. Certain notes of caution are provided with regard to implementation issues, particularly when finite element formulations of incompressible elasticity employ an uncoupled strain energy function consisting of additive deviatoric and volumetric components.
منابع مشابه
A viscoelastic constitutive model can accurately represent entire creep indentation tests of human patella cartilage.
Cartilage material properties provide important insights into joint health, and cartilage material models are used in whole-joint finite element models. Although the biphasic model representing experimental creep indentation tests is commonly used to characterize cartilage, cartilage short-term response to loading is generally not characterized using the biphasic model. The purpose of this stud...
متن کاملA Universal Programmable Fiber Architecture for the Representation of a General Incompressible Linearly Elastic Material as a Fiber-Reinforced Fluid
Biological materials typically consist of elastic fibers immersed in an incompressible aqueous milieu. We consider the generality of an elastic material expressed as a fiberreinforced incompressible fluid. We show that, in the linear regime, any (possibly inhomogeneous and/or anisotropic) incompressible elastic material can be represented as a collection of fifteen families of straight, paralle...
متن کاملRayleigh Wave in an Incompressible Fibre-Reinforced Elastic Solid Half-Space
In this paper, the equation of motion for an incompressible transversely isotropic fibre-reinforced elastic solid is derived in terms of a scalar function. The general solution of the equation of motion is obtained, which satisfies the required radiation condition. The appropriate traction free boundary conditions are also satisfied by the solution to obtain the required secular equation for...
متن کاملExponential Elastic Model and Its Application in Real-Time Simulation
The development of accurate material models and computational methods are two fundamental components in building a real-time realistic surgery simulator. In this paper, we use a least-squares method to calibrate an exponential model of pig liver based on the assumption of incompressible material under a uniaxial testing mode. With the obtained parameters, the stress-strain curves generated from...
متن کاملFixed electrical charges and mobile ions affect the measurable mechano-electrochemical properties of charged-hydrated biological tissues: the articular cartilage paradigm.
The triphasic constitutive law [Lai, Hou and Mow (1991)] has been shown in some special 1D cases to successfully model the deformational and transport behaviors of charged-hydrated, porous-permeable, soft biological tissues, as typified by articular cartilage. Due to nonlinearities and other mathematical complexities of these equations, few problems for the deformation of such materials have ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanical engineering
دوره 129 3 شماره
صفحات -
تاریخ انتشار 2007